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The coarsening and wavenumber selection of striped states growing from random initial conditions
are studied in a non-relaxational, spatially extended, and far-from-equilibrium system by performing
large-scale numerical simulations of Rayleigh-Bénard convection in a large-aspect-ratio cylindrical
domain with experimentally realistic boundaries. We find evidence that various measures of the
coarsening dynamics scale in time with different power-law exponents, indicating that multiple
length scales are required in describing the time dependent pattern evolution. The translational
correlation length scales with time as t0.12, the orientational correlation length scales as t0.54, and
the density of defects scale as t−0.45. The final pattern evolves toward the wavenumber where
isolated dislocations become motionless, suggesting a possible wavenumber selection mechanism for
large-aspect-ratio convection.

PACS numbers: 47.54.+r,47.52.+j,47.20.Bp,47.27.Te

I. INTRODUCTION

Rayleigh-Bénard convection in large-aspect-ratio do-
mains is a canonical system in which to study the emer-
gence of order from initial disorder in a spatially ex-
tended system that is driven far-from-equilibrium [1]. A
complete understanding of the transient dynamics of the
emerging order and the long-time selected pattern is still
lacking. In this Letter we investigate the emergence of
striped states when a convection layer is quenched into an
ordered state from random initial conditions. Although
much has been learned for systems of stripes approach-
ing an equilibrium state (relaxational dynamics), much
remains unclear for driven systems that are approaching
a steady non-equilibrium state (non-relaxational dynam-
ics). This is our focus here.

An important physical property of the final selected
pattern is the spatial wavenumber of the convection rolls.
For relaxational systems the long-time asymptotic state
is the one that minimizes the free energy of the system
(or a frozen disordered state if the optimal state is ener-
getically difficult to reach). For non-relaxational systems
however, the long-time asymptotic state is not one mini-
mizing a free energy, hence raising the issue of wavenum-
ber selection. Many wavenumber selection mechanisms
have been identified for highly controlled situations, of-
ten limiting the type and number of pattern defects that
interact (for example, selection by grain boundaries, dis-
locations, or regions of large curvature) or for particular
pattern geometries (such as axisymmetric convection or
spatial ramps in plate separation) [2–4]. However, an
understanding of the wavenumber selected in a large-
aspect-ratio domain initiated from small random ther-
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mal perturbations remains elusive. Therefore, in a non-
relaxational system such as convection, the long-time
asymptotic state is unknown a priori and can be one
of an infinite number of ordered states. The effect on the
coarsening dynamics is not currently understood and is
discussed further below.

Substantial work has been done on the pattern coars-
ening in relaxational systems that occurs as domains of
uniform stripes compete and grow in size. In this case,
the dynamics can be understood in terms of the mono-
tonic decrease of the free energy. This provides a useful
tool to look for important dynamical interactions and
has been exploited for the case of diblock copolymers [5].
Experiments using diblock copolymers have been per-
formed in extremely-large-aspect ratios with more than
105 microdomain repeat spacings, effectively eliminat-
ing boundary effects, and for durations long enough to
reach striped states free of defects. The orientational
correlation length, ξo, was found to grow in time as
ξo ∼ t1/4, and the dominant coarsening mechanism was
determined to be annihilation events involving disclina-
tion quadrupoles.

The Swift-Hohenberg equation (SH), which is re-
laxational, and the Generalized Swift-Hohenberg equa-
tion (GSH), which can be either relaxational or non-
relaxational depending on the choice of the nonlinearity,
have been studied as model systems for the coarsening of
striped patterns in periodic geometries. For the SH equa-
tion a measure of the translational correlation length, ξT ,
was found to vary as t1/5 in the absence of noise and as
t1/4 in the presence of noise [6], although recent deter-
ministic simulations performed close to threshold in the
absence of noise give t1/3 [7]. A study of the SH equa-
tion and a non-relaxational GSH equation found that the
domain size scaled as t1/5 in all cases [8]. However, the
non-relaxational results gave an orientational length scale
given by ξo ∼ t1/2, and the stripe patterns were found
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to evolve toward a final wavenumber, qd, where isolated
dislocations become stationary.

To date, experiments on the coarsening dynamics of a
far-from-equilibrium, spatially extended non-relaxational
system have been performed only for the electroconvec-
tion of a liquid nematic crystal [9]. Here the pattern is
asymmetric, with convection rolls forming zig and zag
rolls at an angle ±θ relative to the nematic anisotropy
direction. For this system, using isotropic measures of
the domain growth, it has been found that the domains
grow as t1/5 and the domain wall length grows as t1/4 [9].

Coarsening experiments on Rayleigh-Bénard convec-
tion in a large-aspect-ratio container have not been con-
ducted. A considerable experimental difficulty is in
achieving a spatially uniform initial state composed of
random perturbations; slight variations in the appara-
tus will influence the initial pattern emerging from the
disorder. Numerical simulations are free of these difficul-
ties, however, allowing us to investigate the coarsening
dynamics of Rayleigh-Bénard convection in an experi-
mentally realistic geometry for the first time.

II. DISCUSSION

We study numerically, using a parallel spectral ele-
ment code [10], Rayleigh-Bénard convection in a large-
aspect-ratio cylindrical domain (see [11] for related ap-
plications). The aspect ratio is a measure of the spatial
extent of the system and for a cylindrical geometry is de-
fined as Γ = r/d, where r is the radius of the convection
cell and d is the depth. The Boussinesq equations that
govern the dynamics of the velocity ~u, temperature T ,
and pressure p, fields are,

σ−1
(
∂t + ~u•~∇

)
~u = −~∇p + RT ẑ +∇2~u,

(
∂t + ~u•~∇

)
T = ∇2T,

~∇•~u = 0,

where time differentiation is given by ∂t, ẑ is a unit vector
in the vertical direction, σ is the Prandtl number, and R
is the Rayleigh number. The equations are nondimen-
sionalized using the layer depth d, the vertical diffusion
time for heat τv, and the constant temperature difference
across the layer ∆T , as the length, time, and temperature
scales, respectively. All bounding surfaces are no slip, the
lower and upper surfaces (z = 0, 1) are held at constant
temperature, and the sidewalls are perfectly insulating.

We study the pattern evolution from small random
thermal perturbations, δT ∼ 0.01, in a large-aspect-ratio
domain, Γ = 57, containing a fluid with σ = 1.4. We
present results for two simulations at ε = 0.27 (where
ε = (R − Rc)/Rc is the reduced Rayleigh number and
Rc is the critical Rayleigh number) that differ only in
the particular choice of random initial conditions. Fig-
ure 1 illustrates the time evolution of the temperature
field at mid-depth for these parameters. At early times

FIG. 1: The mid-depth temperature field, T , at times t =
16, 32, 64 and 128, panels (a)-(d), repsectively. Light regions
indicate warm rising fluid, and dark regions indicate cool de-
scending fluid. Simulations parameters: ε = 0.27, Γ = 57,
and σ = 1.4.

(see Fig. 1(a)) there are present many small patches of
arbitrarily oriented rolls, as well as many defects, includ-
ing disclinations, dislocations, grain boundaries, spirals,
wall foci, and targets. As time progresses, the pattern
coarsens into larger domains of stripes with fewer defects
mostly dominated by wall foci, grain boundaries, and iso-
lated dislocations.
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FIG. 2: The scaling property of the azimuthally averaged
structure factor S(q, t) is illustrated by the data collapse
found at various times when plotting S(q, t)/tγ versus (q −
〈q〉)tγ with γ = 0.12.
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A measure of the translational order is the transla-
tional correlation length, ξT , which is calculated from the
time variation of the second moment of the azimuthally
averaged structure factor S(q, t). The structure factor is
the square of the modulus of the spatial Fourier trans-
form of the temperature perturbation field at mid-depth.
The scaling property of S(q, t) is illustrated in Fig. 2 by
the data collapse at various times by plotting S(q, t)/tγ

versus (q − 〈q〉)tγ for γ = 0.12 (where 〈q〉 is the aver-
age wavenumber). The data collapse occurs over a range
of 4 . t . 256 indicating a window of time over which
the scaling Ansatz is valid. For large times t > 256,
the scaling breakdown indicates the influence of lateral
boundaries and finite size effects. As shown in Fig. 2,
the collapse of the S(q, t) curves at early time t = 4
(squares) and late time t = 256 (circles) are beginning
to show some deviation. In the discussion that follows,
we consider the dynamics only in the scaling regime. The
translational correlation length is shown in Fig. 3(a). The
scaling of ξT ∼ t0.12 indicates very slow growth when
compared with the predominance of t1/4 and t1/5 scal-
ings found in a variety of other systems as already dis-
cussed. Similar results are obtained from measuring the
time variation of the inverse half-width at half-height of
S(q, t).

The time dependence of local orientational order is
measured from the time variation of the orientational
correlation length, ξo. This is determined by calculating
the second moment of the azimuthally averaged Fourier
intensity of Re[e2iθ], where θ is the local angle of the
stripes [12]. As shown in Fig. 3(b), ξo ∼ t0.54, which
grows faster than ξT , as shown by the long dashed line,
suggesting the presence of an additional length scale in
the coarsening dynamics.

The spatial distribution of defects is quantified in Fig. 4
by highlighting regions of large local curvature, κ, where
κ = ~∇•k̂ (k̂ = ~k/|k| is the local unit wavevector [12]).
There are many defects early in the time evolution; how-
ever, as time progresses, most of the defects are anni-
hilated, leaving domain walls and isolated dislocations.
A defect density, ρd, can be defined as the ratio of the
total area covered by defects. The time evolution of ρd

is shown in Fig. 5 and exhibits a scaling of ρd ∼ t−0.45.
For a pattern dominated by isolated defects exhibiting
isotropic growth in all directions, which is approximately
valid for the very early time evolution (t . 10), this sug-
gests a scaling of the domain size as ξd ∼ t0.23. On
the other hand, for patterns composed of defect lines (or
grain boundaries) of unit width, which is relevant for
later times (t & 10), ρd is the length of the line suggest-
ing a scaling of ξd ∼ t0.45.

The long-time asymptotic state of a convection pat-
tern free of the influence of lateral boundaries remains
poorly understood. Our results suggest that the pattern
evolves toward the wavenumber where isolated disloca-
tions become motionless, qd (see Fig. 6). The values of
qd have been obtained, for the fluid parameters of interest
here, both experimentally and numerically by measuring

FIG. 3: Panel (a): The translational correlation length ξT as
a function of time. The dashed line is a power-law fit yielding
a scaling of t0.12. The dash-dotted line illustrates a scaling
of t1/5 for reference. Panel (b): The orientational correlation
length ξo as a function of time. The dashed line is a power-law
fit yielding a scaling of t0.54. For reference the dashed-dotted
line shows the time variation of ξT ∼ t0.12 from panel (a) to
illustrate the two different length scales.

the climb velocity of a dislocation in a background of
either straight parallel rolls or a giant one-armed spiral
and interpolating to find the wavenumber of zero climb
velocity [13]. For reference, the wavenumber selected by
patches of curved rolls or foci, qf , is also shown [14]. The
wavenumber qf is also where D⊥ → 0 in the absence of
mean flow (D⊥ is the diffusion coefficient perpendicular
to the wavevector in the Pomeau-Manville phase equa-
tion [15]). For large times where the effects of the bound-
aries are important 256 . t . 500 we find a slow increase
in the wavenumber indicating that qf may be selected for
at very long times by the prevalence of curved rolls from
large wall foci. In a similar calculation for slightly more
supercritical conditions, ε = 0.46, the pattern wavenum-
ber evolves, for times in the scaling regime, to q = 2.58
where qd = 2.63, and qf = 3.09, again suggesting a se-
lected wavenumber of qd. These results indicate that the
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FIG. 4: Contour plots illustrating the spatial distribution of
defects: panel (a) t = 16, panel (b) t = 128. Defect regions
are black, and defect-free regions are white. The ratio of the
defect containing area to the total area yields a measure of
the defect density ρd, which is shown as a function of time in
Fig. 5. The patterns corresponding to these defect distribu-
tions are displayed in Fig. 1(a) and (d).
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FIG. 5: The defect density, ρd, as a function of time. A
power-law fit to the data is shown by the dashed line with
ξd ∼ t−0.45.

wavenumber selected in large-aspect-ratio domains is qd

in agreement with the predictions made from numerical
simulations of the GSH equations [8].

III. CONCLUSION

We have investigated domain coarsening and
wavenumber selection in a non-relaxational, extended,
and far-from-equilibrium system by performing full
numerical simulations of Rayleigh-Bénard convection

with experimentally realistic boundary conditions. In
non-relaxational systems the long-time asymptotic state
is unknown, thus raising the question of wavenumber
selection and the issue of how this might affect the
coarsening dynamics. For Rayleigh-Bénard convection
we find that multiple length scales are necessary to
describe the pattern evolution in time. The coarsening
dynamics involve the complicated evolution of many
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FIG. 6: Wavenumber variation as a function of time.
Wavenumber selected by zero velocity dislocations qd =
2.81 [13] and wavenumber selected by patches of curved con-
vection rolls qf = 3.11 [14].

types of defects, making it difficult to identify dominant
coarsening mechanisms responsible for the observed
scaling exponents. Further insight could be gained
by studying defect interactions in simpler prescribed
situations. We also find that the pattern selects the
wavenumber where isolated dislocations become sta-
tionary, suggesting that this may be the wavenumber
selected from random initial conditions in the absence of
influences from the lateral boundaries.
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